СТАТИСТИЧНЕ ОЦІНЮВАННЯ ЧИСТОГО ВНЕСКУ ЗМІНИ КЛІМАТУ У ФОРМУВАННЯ КОНЦЕНТРАЦІЙ ЗАБРУДНЮЮЧИХ РЕЧОВИН В АТМОСФЕРНОМУ ПОВІТРІ НАД ТЕРИТОРІЄЮ УКРАЇНИ

Автор(и)

  • Михайло САВЕНЕЦЬ, к.геогр.н., ст. досл, Український гідрометеорологічний інститут ДСНС України та НАН України https://orcid.org/0000-0001-9429-6209
  • Софія КРАЙНИК, інженер Український гідрометеорологічний інститут ДСНС України та НАН України https://orcid.org/0009-0004-6299-0983
  • Дар’я ГРАМА, студентка Київський національний університет імені Тараса Шевченка image/svg+xml
  • Марина РУДАС, студентка Київський національний університет імені Тараса Шевченка image/svg+xml
  • Оксана СКЛЯР, студентка Київський національний університет імені Тараса Шевченка image/svg+xml

DOI:

https://doi.org/10.17721/1728-2721.2025.92-93.6

Ключові слова:

діоксид азоту, формальдегід, тропосферний озон, забруднення атмосфери, адитивна модель, зміна клімату

Анотація

Вступ. Забруднення атмосферного повітря та зміна клімату є одними з основних чинників негативного антропогенного впливу на довкілля. Варіативність забруднюючих речовин більшою мірою залежить від викидів, проте залишається недостатньо вивченим роль зміни клімату у формуванні концентрацій, що важливо враховувати при довготерміновому плануванні покращення якості атмосферного повітря та стратегії зменшення викидів. У даній роботі представлено аналіз чистого внеску зміни клімату у формування концентрацій шкідливих домішок на основі застосування статистичного підходу до розкладання часових рядів.

Методи. В основі досліджень лежать місячні дані викидів і концентрацій діоксиду азоту (NO2), фомальдегіду (CH2O) та тропосферного (приземного) озону (O3) із реаналізів Copernicus Atmospheric Monitoring Service (CAMS) за період з 2003 до 2021 рр., а також дані температури повітря, швидкості вітру і кількості опадів із реаналізу ERA5. Застосування адитивної моделі дозволило розкласти часові ряди концентрацій на сезонну (внутрішньорічну) складову, міжрічні тренди та міжрічну залежність варіативності концентрацій NO2, CH2O й O3 від мінливості кліматичних параметрів.

Результати. Сезонна мінливість концентрацій, що залежить як від зміни метеорологічних умов так і відмінності у викидах забруднюючих речовин, пояснює від 61 до 74% загальної варіативності NO2, та близько 90% CH2O й O3. Міжрічні тенденції досліджуваних забруднюючих речовин, що залежать від зміни антропогенного навантаження,  складають від 0,6% до 3,6% для NO2 та переважно менше 1% для CH2O й O3, проте зі статистично значущими змінами. Чистий внесок зміни клімату, оцінений через статистичну залежність міжрічних варіацій аномалій часових рядів забруднюючих речовин з аномаліями кліматичних параметрів, показав, що зміна клімату визначає менше 10% загальної варіативності концентрацій забруднюючих речовин. У середньому цей показник складає близько 5% для NO2, 3% для O3 та лише близько 1% для CH2O.

Висновки. Отримані результати вказують на те, що розроблення стратегій зменшення викидів забруднюючих речовин та покращення якості атмосферного повітря, у першу чергу, має передбачати зменшення прямих антропогенних викидів і їх негативний вплив на здоров’я населення й екосистеми. Проте роль зміни клімату також має бути врахована як значущий чинник у формуванні атмосферного забруднення.

 

Завантажити

Дані для завантаження поки недоступні.

Посилання

Afifa, Arshad, K., Hussain, N., Ashraf, M.H., Saleem, M.Z. (2024). Air pollution and climate change as grand challenges to sustainability. Science of The Total Environment, 928, 172370, https://doi.org/10.1016/j.scitotenv.2024.172370

Arguez, A. & Vose, R. S. (2011). The Definition of the Standard WMO Climate Normal: The Key to Deriving Alternative Climate Normals. Bulletin of the American Meteorological Society, 92(6), 699–704, https://doi.org/10.1175/2010BAMS2955.1

Brasseur, G. P., Schultz M., Granier, C., Saunois, M., Diehl, T., Botzet, M., Roeckner E., Walters, S. (2006). Impact of Climate Change on the Future Chemical Composition of the Global Troposphere. J. Climate, 19, 3932–3951, https://doi.org/10.1175/JCLI3832.1

CAMS (2025). Copernicus Atmospheric Monitoring Service. https://ads.atmosphere.copernicus.eu/datasets (Accessed on 17.02.2025)

CAMS emissions (2025). CAMS global emission inventories. https://ads.atmosphere.copernicus.eu/datasets/cams-global-emission-inventories?tab=overview (Accessed on 17.02.2025).

Chang, K.-L., Schultz, M. G., Lan, X., McClure-Begley, A., Petropavlovskikh, I., Xu, X., Ziemke, J. R. (2021). Trend detection of atmospheric time series. Elementa: Science of the Anthropocene, 9(1), https://doi.org/10.1525/elementa.2021.00035

Chauhan, B. V. S., Smallbone, K. L., Berg, M., Wyche, K. P. (2025). The temporal evolution of HCHO and changes in atmospheric composition in the southeast of the United Kingdom. Case Studies in Chemical and Environmental Engineering, 11, 101092, https://doi.org/10.1016/j.cscee.2024.101092

Cheng, C.S., Campbell, M., Li, Q., Li, G., Auld, H., Day, N., Pengelly, D., Gingrich, S., Yap, D. (2007). A Synoptic Climatological Approach to Assess Climatic Impact on Air Quality in South-central Canada. Part II: Future Estimates. Water Air Soil Pollut., 182, 117–130. https://doi.org/10.1007/s11270-006-9326-4

Chugai, A. V., Safranov, T. A. (2020). Features of air pollution the cities of the North-Western Black Sea region. Visnyk of V. N. Karazin Kharkiv National University, Series Geology. Geography. Ecology, 52, 251-260. [in Ukrainian] https://doi.org/10.26565/2410-7360-2020-52-18

de Sario, M., Katsouyanni, K., Michelozzi, P. (2013). Climate change, extreme weather events, air pollution and respiratory health in Europe. European Respiratory Journal, 42(3), 826–843. https://doi.org/10.1183/09031936.00074712

Dewan, S. & Lakhani, A. (2022). Tropospheric ozone and its natural precursors impacted by climatic changes in emission and dynamics. Front. Environ. Sci., 10, 1007942, https://doi.org/10.3389/fenvs.2022.1007942

Doherty, R. M., Wild, O., Shindell, D. T., Zeng, G., MacKenzie, I. A., Collins, W. J., Fiore, A. M., Stevenson, D. S., Dentener, F. J., Schultz, M. G., Hess, P., Derwent, R. G., Keating, T. J. (2013). Impacts of climate change on surface ozone and intercontinental ozone pollution: A multi-model study. JGR Atmospheres, 118(9), 3744-3763, https://doi.org/10.1002/jgrd.50266

EAC4 (2025). ECMWF Atmospheric Composition Reanalysis 4, CAMS. https://ads.atmosphere.copernicus.eu/datasets/cams-global-reanalysis-eac4-monthly?tab=overview (Accessed on 17.02.2025).

Elminir, H.D. (2005). Dependence of urban air pollutants on meteorology. Science of The Total Environment, 350(1–3), 225-237, https://doi.org/10.1016/j.scitotenv.2005.01.043

ERA5 (2025). ERA5 monthly averaged data on single levels from 1940 to present. https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview (Accessed on 17.02.2025).

Giorgi F. & Meleux F. (2007). Modelling the regional effects of climate change on air quality. Comptes Rendus Geoscience, 339(11–12), 721-733, https://doi.org/10.1016/j.crte.2007.08.006

Granier, C., S. Darras, H. Denier van der Gon, J. Doubalova, N. Elguindi, B. Galle, M. Gauss, M., Guevara, J.-P. Jalkanen, J. Kuenen, C. Liousse, B. Quack, D. Simpson, K. Sindelarova (2019). The Copernicus Atmosphere Monitoring Service global and regional emissions (April 2019 version). Copernicus Atmosphere Monitoring Service (CAMS) report, 2019, https://doi.org/10.24380/d0bn-kx16

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2023). ERA5 monthly averaged data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.f17050d7 (Accessed on 17.02.2025)

Hong, C., Zhang, Q., Zhang, Y., Davis, S. J., Tong, D., Zheng, Y., Liu, Z., Guan, D., He, K., Schellnhuber, H. J. (2019). Impacts of climate change on future air quality and human health in China. Proceedings of the National Academy of Sciences, 116(35), 17193–17200. https://doi.org/10.1073/pnas.1812881116

Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M. (2019). The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics, 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019

Jacob, D.J. & Winner, D.A. (2009). Effect of climate change on air quality. Atmospheric Environment, 43(1), 51-63. https://doi.org/10.1016/j.atmosenv.2008.09.051

Kuzyk, A., Dumas, I., Oliinyk, O. (2024). Atmospheric air pollution by vehicle transport at the entrances to Lviv. Bulletin of Lviv State University of Life Safety, 29, 12-23. [in Ukrainian] https://doi.org/https://doi.org/10.32447/20784643.29.2024.02

Malytska, L., Ladstätter-Weißenmayer, A., Galytska, E., Burrows, J. P. (2024). Assessment of environmental consequences of hostilities: Tropospheric NO2 vertical column amounts in the atmosphere over Ukraine in 2019–2022. Atmospheric Environment, 318, 120281. https://doi.org/10.1016/j.atmosenv.2023.120281

Melniichuk, M., Horbach, V., Horbach, L., Vovk, O. (2022). Air pollution of the largest cities in the Volyn region: preconditions, consequences and ways of solution of this problem. Visnyk of V. N. Karazin Kharkiv National University, Series Geology. Geography. Ecology, 56, 214-224. [in Ukrainian] https://doi.org/10.26565/2410-7360-2022-56-16

Miller, S. M., Matross, D. M., Andrews, A. E., Millet, D. B., Longo, M., Gottlieb, E. W., Hirsch, A. I., Gerbig, C., Lin, J. C., Daube, B. C., Hudman, R. C., Dias, P. L. S., Chow, V. Y., Wofsy, S. C. (2008) Sources of carbon monoxide and formaldehyde in North America determined from high-resolution atmospheric data. Atmospheric Chemistry and Physics, 8(24), 7673–7696, https://doi.org/10.5194/acp-8-7673-2008

Moreno-Carbonell, S., Sánchez-Úbeda, E. F., Muñoz, A. (2020) Time Series Decomposition of the Daily Outdoor Air Temperature in Europe for Long-Term Energy Forecasting in the Context of Climate Change. Energies, 13(7), 1569, https://doi.org/10.3390/en13071569

Moshammer, H., Poteser, M., Kundi, M., Lemmerer, K., Weitensfelder, L., Wallner, P., Hutter, H.-P. (2020). Nitrogen-Dioxide Remains a Valid Air Quality Indicator. International Journal of Environmental Research and Public Health, 17(10), 3733, https://doi.org/10.3390/ijerph17103733

Murazaki, K. & Hess, P. (2006). How does climate change contribute to surface ozone change over the United States? JGR Atmospheres, 111, D5, https://doi.org/10.1029/2005JD005873

Orru, H., Andersson, C., Ebi, K. L., Langner, J., Åström, C., Forsberg, B. (2013). Impact of climate change on ozone-related mortality and morbidity in Europe. European Respiratory Journal, 41(2), 285–294, https://doi.org/10.1183/09031936.00210411

Rentschler, J., & Leonova, N. (2023). Global air pollution exposure and poverty. Nat Commun., 14, 4432, https://doi.org/10.1038/s41467-023-39797-4

Rychak, N. L., Kizilova, N. M., Maistruk, V. A., Makarenko, A. S., Prognimak, O. S. (2021) Mathematical Analysis of Air Pollution on the Territory of Ukraine Using Open Data Sources. Visnyk VPI, 4, 20–31, https://doi.org/10.31649/1997-9266-2021-157-4-20-31[in Ukrainian]

Savenets, M. V., Dvoretska, I. V., Kozlenko, T. V., Komisar, K. M., Umanets, A. P., Zhemera, N. S. (2023a). Status of atmospheric air pollution in Ukraine prior to the full-scale russian invasion. Part 1: ground-level content of pollutants. Ukrainian Hydrometeorological Journal, 31, 69-87. [in Ukrainian]https://doi.org/10.31481/uhmj.31.2023.05

Savenets, M., Osadchyi, V., Komisar, K., Zhemera, N., Oreshchenko, A. (2023b) Remotely visible impacts on air quality after a year-round full-scale Russian invasion of Ukraine. Atmospheric Pollution Research, 14(11), 101912. https://doi.org/10.1016/j.apr.2023.101912

Savenets, M., Nadtochii, L., Kozlenko, T., Komisar, K., Umanets, A., Zhemera N. (2024). Regarding the data inconsistency from different data sources on emissions and ground-level pollutants’ concentrations in the atmospheric air over Ukraine. Meteorology. Hydrology. Environmental monitoring, 2(6), 17-32, http://doi.org/10.15407/Meteorology2024.06.017 [in Ukrainian]

Seroji, A. R., Webb, A. R., Coe, H., Monks, P. S., Rickard, A. R. (2004). Derivation and validation of photolysis rates of O3, NO2, and CH2O from a GUV‐541 radiometer. Journal of Geophysical Research: Atmospheres, 109, D21, https://doi.org/10.1029/2004JD004674

Shen, Y., Jiang, F., Feng, S., Zheng, Y., Cai, Z., Lyu, X. (2021). Impact of weather and emission changes on NO2 concentrations in China during 2014–2019. Environmental Pollution, 269, 16163, https://doi.org/10.1016/j.envpol.2020.116163

Shevchenko, O., Snizhko, S., Danilova, N. (2015). Air pollution by nitrogen dioxide in Kiev city. Ukrainian Hydrometeorological Journal, 16, 6-16. [in Ukrainian] https://doi.org/10.31481/uhmj.16.2015.01

Syafei, A. D., Irawandani, T. D., Boedisantoso, R., Assomadi, A. F., Slamet, A., Hermana, J. (2019). The influence of environmental conditions (vegetation, temperature, equator, and elevation) on tropospheric nitrogen dioxide in urban areas in Indonesia. IOP Conference Series: Earth and Environmental Science, 303(1), 012034, https://doi.org/10.1088/1755-1315/303/1/012034

Turos, O.I., Maremukha, T.P., Petrosian, A.A., Brezitska, N.V. (2018). Study of atmospheric air pollution with particulate matters (PM10 and PM2.5) in Kyiv. Environment & Health, 4 (89), 36–39, https://doi.org/10.32402/dovkil2018.04.036

Vilcins, D., Christofferson, R. C., Yoon, J.-H., Nazli, S. N., Sly, P. D., Cormier, S. A., Shen, G. (2024). Updates in Air Pollution: Current Research and Future Challenges. Annals of Global Health, 90(1), https://doi.org/10.5334/aogh.4363

Wang, X.-J., Tuo, Y., Li, X.-F., Feng, G.-L. (2023). Features of the new climate normal 1991–2020 and possible influences on climate monitoring and prediction in China. Advances in Climate Change Research, 14(6), 930–940, https://doi.org/10.1016/j.accre.2023.11.007

Wu, Y., Huo, J., Yang, G., Wang, Y., Wang, L., Wu, S., Yao, L., Fu, Q., Wang, L. (2023). Measurement report: Production and loss of atmospheric formaldehyde at a suburban site of Shanghai in summertime. Atmospheric Chemistry and Physics, 23(5), 2997–3014, https://doi.org/10.5194/acp-23-2997-2023

Yatsenko, Y., Shevchenko, O., Snizhko, S. (2018). Assessment of air pollution level of nitrogen dioxide and trends of it changes in the cities of Ukraine. Visnyk of Taras Shevchenko National University of Kyiv: Geology, 3(82), 87-95. [in Ukrainian] http://doi.org/10.17721/1728-2713.82.11

Zhang, C., Hu, Q., Su, W., Xing, C., Liu, C. (2023). Satellite spectroscopy reveals the atmospheric consequences of the 2022 Russia-Ukraine war. Science of The Total Environment, 869, 161759. https://doi.org/10.1016/j.scitotenv.2023.161759

Zhang J. J., Wei Y., Fang Z. (2019). Ozone Pollution: A Major Health Hazard Worldwide. Front Immunol, 10, 2518, https://doi.org/10.3389/fimmu.2019.02518

Додаткові файли

Опубліковано

15-07-2025

Як цитувати

САВЕНЕЦЬ, М., КРАЙНИК, С., ГРАМА, Д., РУДАС, М., & СКЛЯР, О. (2025). СТАТИСТИЧНЕ ОЦІНЮВАННЯ ЧИСТОГО ВНЕСКУ ЗМІНИ КЛІМАТУ У ФОРМУВАННЯ КОНЦЕНТРАЦІЙ ЗАБРУДНЮЮЧИХ РЕЧОВИН В АТМОСФЕРНОМУ ПОВІТРІ НАД ТЕРИТОРІЄЮ УКРАЇНИ. Вісник Київського національного університету імені Тараса Шевченка, Географія, 42-51. https://doi.org/10.17721/1728-2721.2025.92-93.6

Схожі статті

Ви також можете розпочати розширений пошук схожих статей для цієї статті.